\(\int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [209]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 76 \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

[Out]

2*a^(3/2)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+2*a^2*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x
+c))^(1/2)

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2841, 21, 2853, 222} \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[(a + a*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]

[Out]

(2*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*a^2*Sin[c + d*x])/(d*Sqrt[Cos[c + d
*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2841

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c
 + a*d))), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1
)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1
] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}-(2 a) \int \frac {-\frac {a}{2}-\frac {1}{2} a \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+a \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}-\frac {(2 a) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {2 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.12 \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (\sqrt {2} \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\cos (c+d x)}+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{d \sqrt {\cos (c+d x)}} \]

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Sqrt[Cos[c + d*x]] +
2*Sin[(c + d*x)/2]))/(d*Sqrt[Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(143\) vs. \(2(66)=132\).

Time = 5.44 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.89

method result size
default \(\frac {2 \left (\cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right )}}\) \(144\)

[In]

int((a+cos(d*x+c)*a)^(3/2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/d*(cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+sin(d*x+c))*(a*(1+cos(d*x+c)))
^(1/2)/(1+cos(d*x+c))/cos(d*x+c)^(1/2)*a

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.43 \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \, {\left (\sqrt {a \cos \left (d x + c\right ) + a} a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )\right )}}{d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

2*(sqrt(a*cos(d*x + c) + a)*a*sqrt(cos(d*x + c))*sin(d*x + c) - (a*cos(d*x + c)^2 + a*cos(d*x + c))*sqrt(a)*ar
ctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c)^2 + d*cos(d*x + c))

Sympy [F]

\[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+a*cos(d*x+c))**(3/2)/cos(d*x+c)**(3/2),x)

[Out]

Integral((a*(cos(c + d*x) + 1))**(3/2)/cos(c + d*x)**(3/2), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 997 vs. \(2 (66) = 132\).

Time = 0.47 (sec) , antiderivative size = 997, normalized size of antiderivative = 13.12 \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/2*((a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c
)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) +
 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
 + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x
+ 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2
(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*
c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c) + 1)) - 1))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + 4*
(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
)) - (a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c) + 1)))*sqrt(a))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*d)

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \]

[In]

int((a + a*cos(c + d*x))^(3/2)/cos(c + d*x)^(3/2),x)

[Out]

int((a + a*cos(c + d*x))^(3/2)/cos(c + d*x)^(3/2), x)